Luận văn Ảnh hưởng của thông tin bất cân xứng đối với nhà đầu tư trên thị trường chứng khoán Thành phố Hồ Chí Minh
Mục tiêu nghiên cứu của luận văn này là xác định mức độ thông tin bất cân
xứng giữa nhà đầu tư và công ty niêm yết trên thị trường chứng khoán TP.HCM,
xem xét yếu tố nào tác động mạnh đến vấn đề thông tin bất cân xứng hiện nay và đề
ra các gợi ý chính sách nhằm làm giảm mức độ thông tin bất cân xứng để nhà đầu tư
đầu tư hiệu quả hơn.
Kết quả nghiên cứu cho thấy thành phần chi phí lựa chọn bất lợi của nhà đầu
tư trong sự biến thiên của giá rất cao. Vì vậy tác giả cho rằng mức độ thông tin bất
cân xứng trên thị trường hiện nay rất cao. Kết quả đo lường chi phí lựa chọn bất lợi
theo các biến thông tin cho thấy: tỷ lệ giữa giá trị sổ sách và giá trị thị trường (MB)
có tương quan dương với chi phí lựa chọn bất lợi, giá trị thị trường của vốn cổ phần
(MVE) có tương quan âm, giá cổ phiếu (PRI) có tương quan âm và sản lượng giao
dịch (VOL) có tương quan dương. Kết quả kiểm tra đa cộng tuyến thì có MB và
PRI là hai yếu tố gây ra vấn đề này.
Hai trong số những gợi ý chính sách chính mà tác giả đưa ra để hạ thấp vấn
đề thông tin bất cân xứng: thứ nhất là sàn lọc những công ty có đủ độ lớn mới được
niêm yết trên thị trường, thực hiện bằng việc nâng cao qui định về vốn pháp định và
đẩy nhanh tiến trình cổ phần hóa các tổng công ty, tập đoàn, công ty lớn hiện nay,
các công ty niêm yết cần phải công bố thông tin đầy đủ và chính xác hơn (phát tín
hiệu); thứ hai là khuyến khích người tham gia đầu tư trang bị kiến thức về chứng
khoán để giảm hành vi bầy đàn trong giao dịch và để bình ổn thị trường
Tóm tắt nội dung tài liệu: Luận văn Ảnh hưởng của thông tin bất cân xứng đối với nhà đầu tư trên thị trường chứng khoán Thành phố Hồ Chí Minh
TRƯỜNG ĐẠI HỌC KINH TẾ THÀNH PHỐ HỒ CHÍ MINH KHOA SAU ĐẠI HỌC ----------WωX---------- LÊ AN KHANG ẢNH HƯỞNG CỦA THÔNG TIN BẤT CÂN XỨNG ĐỐI VỚI NHÀ ĐẦU TƯ TRÊN THỊ TRƯỜNG CHỨNG KHOÁN TP.HCM Chuyên ngành: Kinh tế phát triển LUẬN VĂN THẠC SĨ KINH TẾ Người hướng dẫn khoa học: PGS.TS. Nguyễn Trọng Hoài TP. HỒ CHÍ MINH, NĂM 2008 LỜI CẢM ƠN Trước tiên tôi xin chân thành cảm ơn thầy Nguyễn Trọng Hoài đã tận tình chỉ bảo, góp ý và động viên tôi trong suốt quá trình thực hiện luận văn tốt nghiệp này. Tôi cũng xin chân thành cảm ơn thầy Nguyễn Hoàng Bảo đã nhiệt tình quan tâm và động viên tôi trong suốt thời gian vừa qua. Nhân đây tôi xin gửi lời cảm ơn đến quý Thầy Cô, những người đã tận tình truyền đạt kiến thức cho tôi trong hai năm học cao học vừa qua. Tôi cũng xin gửi lời cảm ơn đến em Khoa, bạn Chí, bạn Duy, anh Quy, anh Vũ, anh Thụy, anh Phúc và anh Quý đã cung cấp một số tài liệu rất hữu ích cho luận văn này. Những lời cảm ơn sau cùng con xin cảm ơn cha mẹ, em xin cảm ơn các anh trong gia đình đã hết lòng quan tâm và tạo điều kiện tốt nhất để con (em) hoàn thành được luận văn tốt nghiệp này. Lê An Khang LỜI CAM ĐOAN Tôi xin cam đoan rằng đây là công trình nghiên cứu của tôi, có sự hỗ trợ từ Thầy hướng dẫn và những người tôi đã cảm ơn. Các nội dung nghiên cứu và kết quả trong đề tài này là trung thực và chưa từng được ai công bố trong bất cứ công trình nào. TP.HCM, ngày 25 tháng 02 năm 2008 Tác giả Lê An Khang TÓM TẮT Mục tiêu nghiên cứu của luận văn này là xác định mức độ thông tin bất cân xứng giữa nhà đầu tư và công ty niêm yết trên thị trường chứng khoán TP.HCM, xem xét yếu tố nào tác động mạnh đến vấn đề thông tin bất cân xứng hiện nay và đề ra các gợi ý chính sách nhằm làm giảm mức độ thông tin bất cân xứng để nhà đầu tư đầu tư hiệu quả hơn. Kết quả nghiên cứu cho thấy thành phần chi phí lựa chọn bất lợi của nhà đầu tư trong sự biến thiên của giá rất cao. Vì vậy tác giả cho rằng mức độ thông tin bất cân xứng trên thị trường hiện nay rất cao. Kết quả đo lường chi phí lựa chọn bất lợi theo các biến thông tin cho thấy: tỷ lệ giữa giá trị sổ sách và giá trị thị trường (MB) có tương quan dương với chi phí lựa chọn bất lợi, giá trị thị trường của vốn cổ phần (MVE) có tương quan âm, giá cổ phiếu (PRI) có tương quan âm và sản lượng giao dịch (VOL) có tương quan dương. Kết quả kiểm tra đa cộng tuyến thì có MB và PRI là hai yếu tố gây ra vấn đề này. Hai trong số những gợi ý chính sách chính mà tác giả đưa ra để hạ thấp vấn đề thông tin bất cân xứng: thứ nhất là sàn lọc những công ty có đủ độ lớn mới được niêm yết trên thị trường, thực hiện bằng việc nâng cao qui định về vốn pháp định và đẩy nhanh tiến trình cổ phần hóa các tổng công ty, tập đoàn, công ty lớn hiện nay, các công ty niêm yết cần phải công bố thông tin đầy đủ và chính xác hơn (phát tín hiệu); thứ hai là khuyến khích người tham gia đầu tư trang bị kiến thức về chứng khoán để giảm hành vi bầy đàn trong giao dịch và để bình ổn thị trường. MỤC LỤC Chương I. Giới thiệu ----------------------------------------------------------------------------- 1 1.1. Mở đầu ----------------------------------------------------------------------------------------- 1 1.2. Vấn đề nghiên cứu---------------------------------------------------------------------------- 4 1.3. Mục tiêu và câu hỏi nghiên cứu------------------------------------------------------------- 7 1.3.1. Mục tiêu ----------------------------------------------------------------------------------- 7 1.3.2. Câu hỏi nghiên cứu ---------------------------------------------------------------------- 8 1.4. Đối tượng và phạm vi nghiên cứu ---------------------------------------------------------- 8 1.4.1. Đối tượng nghiên cứu-------------------------------------------------------------------- 8 1.4.2. Phạm vi nghiên cứu ---------------------------------------------------------------------- 9 1.5. Giả thiết nghiên cứu -------------------------------------------------------------------------- 9 1.6. Kết cấu của đề tài ----------------------------------------------------------------------------- 9 Chương II. Tổng quan lý thuyết và các nghiên cứu trước ---------------------------------- 10 2.1. Lý thuyết về thị trường chứng khoán---------------------------------------------------- 10 2.1.1. Khái niệm về thị trường chứng khoán ----------------------------------------------- 10 2.1.2. Thành phần tham gia thị trường chứng khoán-------------------------------------- 10 2.2. Vai trò của thông tin trên TTCK---------------------------------------------------------- 12 2.3. Lý thuyết về thông tin bất cân xứng------------------------------------------------------ 13 2.3.1. Giới thiệu sơ lược về thông tin bất cân xứng --------------------------------------- 13 2.3.2. Các khái niệm về thông tin bất cân xứng-------------------------------------------- 14 2.3.3. Hệ quả của thông tin bất cân xứng --------------------------------------------------- 15 2.3.4. Ảnh hưởng của thông tin bất cân xứng đối với nhà đầu tư ----------------------- 16 2.3.5. Giải pháp lý thuyết hạn chế thông tin bất cân xứng ------------------------------- 17 2.4. Các nghiên cứu thực nghiệm đo lường thông tin bất cân xứng ----------------------- 19 2.4.1. Mô hình xác định chi phí lựa chọn bất lợi ------------------------------------------ 19 2.4.2. Hàm hồi qui và biến đo lường thông tin bất cân xứng ---------------------------- 23 2.5. Mô hình nghiên cứu đề nghị--------------------------------------------------------------- 26 2.5.1. Lựa chọn mô hình đo lường chi phí lựa chọn bất lợi ------------------------------ 26 2.5.2. Lựa chọn mô hình và biến đo lường thông tin bất cân xứng --------------------- 27 2.6. Kết luận -------------------------------------------------------------------------------------- 31 Chương III. Hiện trạng thông tin trên thị trường chứng khoán ----------------------------- 31 3.1. Sơ lược về thị trường chứng khoán ------------------------------------------------------- 31 3.2. Thực trạng công bố thông tin của các công ty niêm yết ------------------------------- 38 3.2.1. Thực trạng công bố thông tin theo qui định hiện hành ---------------------------- 38 3.2.2. Thực trạng các nhân tố tác động đến tình trạng thông tin của thị trường ------- 40 3.3. Kết luận -------------------------------------------------------------------------------------- 42 Chương IV. Phương pháp nghiên cứu và dữ liệu--------------------------------------------- 43 4.1. Mô hình đo lường--------------------------------------------------------------------------- 43 4.1.1. Xác định chi phí lựa chọn bất lợi----------------------------------------------------- 43 4.1.2. Mô hình đo lường mức độ thông tin ------------------------------------------------- 44 4.2. Chọn mẫu và dữ liệu ----------------------------------------------------------------------- 45 4.2.1. Chọn mẫu-------------------------------------------------------------------------------- 45 4.2.2. Dữ liệu ----------------------------------------------------------------------------------- 45 4.3. Kết quả thực nghiệm và giải thích kết quả ---------------------------------------------- 47 4.3.1. Thống kê mô tả ------------------------------------------------------------------------- 47 4.3.2. Kết quả nghiên cứu thực nghiệm----------------------------------------------------- 50 4.4. Kết luận -------------------------------------------------------------------------------------- 53 Chương V. Kết luận và gợi ý chính sách ----------------------------------------------------- 54 5.1. Kết luận vấn đề nghiên cứu---------------------------------------------------------------- 54 5.2. Gợi ý chính sách ---------------------------------------------------------------------------- 55 5.3. Giới hạn của đề tài-------------------------------------------------------------------------- 58 5.3.1. Mô hình đo lường chi phí lựa chọn bất lợi ------------------------------------------ 58 5.3.2. Số lượng công ty niêm yết ------------------------------------------------------------ 58 5.3.3. Biến đo lường--------------------------------------------------------------------------- 58 5.3.4. Kiểm soát biến nội sinh---------------------------------------------------------------- 59 5.3.5. Các lĩnh vực nghiên cứu tiếp tục ----------------------------------------------------- 59 TÀI LIỆU THAM KHẢO -------------------------------------------------------------------------- 60 PHỤ LỤC 1 --------------------------------------------------------------------------------------- 63 PHỤ LỤC 2 --------------------------------------------------------------------------------------- 65 PHỤ LỤC 3 --------------------------------------------------------------------------------------- 70 DANH MỤC HÌNH VẼ Hình 2.1 : Tóm tắt mô hình thông tin bất cân xứng ----------------------------------- 19 Hình 2.2: Tóm tắt quy trình nghiên cứu ------------------------------------------------ 29 Hình 3.1a: Thực trạng VNIndex và Lệnh giao dịch từ 28/07/2000-25/06/2001 ---- 32 Hình 3.1b: Thực trạng VNIndex và Lệnh giao dịch từ 25/6/2001-23/10/2003------ 33 Hình 3.1c: Thực trạng VNIndex và Lệnh giao dịch từ 23/10/2003-25/04/2006 ---- 34 Hình 3.1d: Thực trạng VNIndex và Lệnh giao dịch từ 25/04/2006-13/03/2007 ---- 35 Hình 3.1e: Thực trạng VNIndex và Lệnh giao dịch từ 13/03/2007 đến nay ------ 36 Hình 4.1a: Đồ thị và thống kê miêu tả biến DASC------------------------------------ 67 Hình 4.1b: Đồ thị và thống kê miêu tả biến MB--------------------------------------- 67 Hình 4.1c: Đồ thị và thống kê miêu tả biến MVE ------------------------------------- 67 Hình 4.1d: Đồ thị và thống kê miêu tả biến VOL ------------------------------------- 68 Hình 4.1e: Đồ thị và thống kê miêu tả biến PRI --------------------------------------- 68 Hình 4.1f: Đồ thị và thống kê miêu tả biến VAR-------------------------------------- 68 Hình 4.1g: Đồ thị và thống kê miêu tả biến SIGR------------------------------------- 69 Hình 4.1h: Đồ thị và thống kê miêu tả biến SIGVOL -------------------------------- 69 Hình 4.2: Đồ thị biểu diễn phương sai và biến giải thích----------------------------- 78 DANH MỤC BẢNG BIỂU Bảng 2.1: Tóm tắt biến -------------------------------------------------------------------- 29 Bảng 3a: Thực trạng các biến thông tin------------------------------------------------- 65 Bảng 3b: Thống kê miêu tả các nhân tố ảnh hưởng đến mức độ thông tin -------- 40 Bảng 4.1a: Thành phần lựa chọn bất lợi của mỗi cổ phiếu--------------------------- 63 Bảng 4.1b: Thành phần lựa chọn bất lợi ------------------------------------------------ 47 Bảng 4.1c: Thành phần lựa chọn bất lợi có 0<ASC<1-------------------------------- 48 Bảng 4.2a: Chi phí lựa chọn bất lợi trên mỗi cổ phiếu------------------------- ... nhau (DASC^2). Đối với biến LVAR (log của suất sinh lợi hàng ngày), LSIGR (log của độ lệch chuẩn của suất sinh lợi hàng ngày) và LSIGVOL (log của độ lệch chuẩn sản lượng giao dịch), các biến này đều phản ảnh độ ổn định của cổ phiếu. Tuy nhiên, có thể thấy tình hình giao dịch của thị trường trong thời gian qua không theo qui tắc giao dịch thông thường là cổ phiếu tăng thì bán, giảm thì mua mà là càng tăng càng mua, càng giảm càng bán, đây là biểu hiện của tâm lý bầy đàn của thị trường trong giai đoạn này. Vì vậy các biến trên rất khó giải thích trong mô hình. Căn cứ vào mức ý nghĩa thống kê t và lập luận chủ quan của tác giả, tác giả đã loại các biến không có ý nghĩa này ra khỏi mô hình. Như vậy mô hình hồi qui giới hạn được xem xét kế tiếp sẽ là: Mô hình giới hạn: DASC^2 = a0 + a2LMB + a3LMVE + a5LVOL + a6LPRI [4.2a] Bảng 4.4: Kết quả hồi qui theo mô hình giới hạn [4.2a] Dependent Variable: DASC^2 Method: Least Squares Date: 01/16/08 Time: 18:31 Sample: 1 85 Included observations: 85 Variable Coefficient Std. Error t-Statistic Prob. C 0.000704 0.000631 1.116430 0.2676 LMB 0.000299 0.000135 2.210792 0.0299 LMVE -0.000316 6.17E-05 -5.128069 0.0000 LVOL 0.000276 8.01E-05 3.451733 0.0009 LPRI 6.56E-05 0.000110 0.596953 0.5522 R-squared 0.316378 Mean dependent var 0.001600 Adjusted R-squared 0.282197 S.D. dependent var 0.000434 73 S.E. of regression 0.000368 Akaike info criterion -12.92028 Sum squared resid 1.08E-05 Schwarz criterion -12.77659 Log likelihood 554.1117 F-statistic 9.255924 Durbin-Watson stat 2.079590 Prob(F-statistic) 0.000003 Mô hình hồi qui giới hạn có hệ số: DASC^2 = 0.000704 + 0.000299LMB - 0.000316LMVE + (1.116430) (2.210792) (-5.128069) 0.000276LVOL + 0.0000656LPRI [4.2b] (3.451733) (0.596953) Sử dụng kiểm định Wald (Nguyễn Hoàng Bảo, 2004) để kiểm tra việc giới hạn mô hình: Giả thiết : H0: a1 = a4 = a7 = a8 = a9 = 0 (Chọn mô hình giới hạn) H1: Ít nhất có ai ≠ 0 (Không chọn mô hình giới hạn) Từ bảng 4.3 và 4.4 ta có: m 1-k -n * RSS RSSRSS F U UR −= 692613.1 5 1- 10 -85* 0.427453 0.4274530.316378 F =−= F(tính toán) = 1.692613 < F(0.05, m, n-ku) = 2.33492 nên không thể bác bỏ Ho. Vì vậy mô hình giới hạn là mô hình [4.2b]. Sử dụng kiểm định Wald để kiểm tra khả năng giải thích của mô hình giới hạn Giả thiết : H0: a2 = a3 = a5 = a6 = 0 H1: Ít nhất ai ≠ 0 Ta có F = 9.2559 (bảng 4.4) > F(0.05, 9, 76) = 2.00543 bác bỏ giả thiết Ho tức mô hình có biến giải thích hay mô hình [4.2b] được chấp nhận. Kiểm tra hiện tượng đa cộng tuyến trong mô hình 74 Hồi qui lần lượt từng biến giải thích LMB, LMVE, LVOL và LPR với các biến giải thích còn lại, kết quả có R2i của từng biến như sau: R2(LMB) 0.697990 R2(LMVE) 0.827145 R2(LVOL) 0.567963 R2(PRI) 0.633998 Vì R2 < R2 i nên có hiện tượng đa cộng tuyến (Nguyễn Hoàng Bảo, 2004). Loại bỏ các biến có hiện tượng đa cộng tuyến Để loại bỏ những biến có hiện tượng đa cộng tuyến cần tiến hành theo 3 bước sau (Nguyễn Hoàng Bảo, 2004): Bước 1: Xác định hệ số từng phương trình hồi qui sau: 1) DASC^2 = a0 + a2LMB 2) DASC^2 = a0 + a3LMVE 3) DASC^2 = a0 + a5LVOL 4) DASC^2 = a0 + a6LPRI 5) DASC^2 = a0 + a2LMB + a3LMVE 6) DASC^2 = a0 + a2LMB + a5LVOL 7) DASC^2 = a0 + a2LMB + a6LPRI 8) DASC^2 = a0 + a3LMVE + a5LVOL 9) DASC^2 = a0 + a3LMVE + a6LPRI 10) DASC^2 = a0 + a5LVOL + a6LPRI 11) DASC^2 = a0 + a2LMB + a3LMVE + a5LVOL 12) DASC^2 = a0 + a2LMB + a5LVOL + a6LPRI 13) DASC^2 = a0 + a2LMB + a3LMVE + a6LPRI 75 14) DASC^2 = a0 + a3LMVE + a5LVOL + a6LPRI 15) DASC^2 = a0 + a2LMB + a3LMVE + a5LVOL + a6LPRI Kết quả hồi qui bước 1 xem bảng 4.5. Bảng 4.5: Hệ số hồi qui từng phương trình Phương trình LMB (Hệ số) LMVE (Hệ số) LVOL (Hệ số) LPRI (Hệ số) R2 1 -0.00021 0.07010 2 -0.00012 0.19734 3 -0.00008 0.01780 4 -0.00021 0.08699 5 0.00017 -0.00017 0.21455 6 -0.00020 -0.00002 0.07133 7 -0.00008 -0.00016 0.09143 8 -0.00019 0.00020 0.25759 9 -0.00014 0.00005 0.19984 10 -0.00002 -0.00020 0.08769 11 0.00033 -0.00030 0.00027 0.31333 12 0.00017 -0.00017 0.00000 0.21457 13 -0.00008 -0.00001 -0.00016 0.09166 14 -0.00024 0.00023 0.00015 0.27461 15 0.00030 -0.00032 0.00028 0.00007 0.31638 Trung bình trị tuyệt đối 0.00019 0.00021 0.00014 0.00012 Bước 2: Chia từng hệ số cho trung bình trị tuyệt đối. Bước 3: Xác định khoảng biến thiên Max - Min Kết quả bước 2 và bước 3 cho bảng 4.6: Bảng 4.6: Giá trị trung bình trị tuyệt đối của từng hệ số Phương trình LMB LMVE LVOL LPRI 1 -1.1076 2 -0.5971 3 -0.5576 4 -1.6978 5 0.8788 -0.8204 6 -1.0504 -0.1585 7 -0.4202 -1.2653 8 -0.9175 1.4308 9 -0.6748 0.4268 10 -0.1189 -1.6337 76 11 1.6953 -1.4660 1.9664 12 0.8892 -0.8155 -0.0325 13 -0.4035 -0.0699 -1.2493 14 -1.1748 1.6729 1.1692 15 1.5549 -1.5340 2.0251 0.5253 Max 1.6953 -0.5971 2.0251 1.1692 Min -1.1076 -1.5340 -0.5576 -1.6978 Max-min 2.8029 0.9369 2.5827 2.8670 Từ bảng 4.6 cho chúng ta thấy: biến LMB, LVOL và LPRI là 3 biến có hiện tượng đa cộng tuyến vì sự biến thiên của ba biến này là rất lớn, tương ứng là 2.0829, 2.5827 và 2.8670, gần gấp ba lần sự biến thiên của biến LMVE (0.9369). Bằng chứng là từ các hàm hồi qui, hệ số tương ứng của mỗi biến có lúc âm, lúc dương trong từng hàm hồi qui. Chẳng hạn, để dễ phân biệt hiện tượng này, ta xét phương trình 11 và 15 của bảng 4.5 ta thấy dù có hay không có LPRI thì R2 không thay đổi bao nhiêu. Kiểm tra sự tương quan của các biến giải thích và biến phụ thuộc Bảng 4.7: Ma trận tương quan Correlation Matrix DASC^2 LMB LVOL LPRI DASC^2 1 -0.26476 -0.13342 -0.29494 LMB -0.26476 1 0.381454 0.747618 LVOL -0.13342 0.381454 1 0.368892 LPRI -0.29494 0.747618 0.368892 1 Bảng 4.7 cho chúng ta thấy biến LPRI và LMB có tương quan mạnh nhất (0.747618) trong số 3 biến có hiện tượng đa cộng tuyến. Biến LMB có tương quan với biến phụ thuộc DASC^2 là -0.26476 thấp hơn biến LPRI. Vì vậy ta có thể loại bỏ biến LMB ra vì đã gây ra hiện tượng đa cộng tuyến. Tuy nhiên, tác giả tiếp tục kiểm tra hiện tượng đa cộng tuyến của hàm hồi qui DASC^2 theo ba biến LMVE, LVOL và LPRI thì LPRI là biến có hiện tượng gây ra cộng tuyến nên hàm hồi qui đo lường lúc này chỉ còn hai biến là LMVE và LVOL. 77 Hồi qui biến phụ thuộc DASC^2 sau khi loại bỏ biến cộng tuyến Bảng 4.8: Kết quả hồi qui biến phụ thuộc sau khi loại bỏ biến LMB và LPRI Dependent Variable: DASC Method: Least Squares Date: 02/15/08 Time: 14:21 Sample: 1 85 Included observations: 85 Variable Coefficient Std. Error t-Statistic Prob. C 0.001129 0.000487 2.318078 0.0229 LMVE -0.000189 3.68E-05 -5.145653 0.0000 LVOL 0.000195 7.55E-05 2.578087 0.0117 R-squared 0.257568 Mean dependent var 0.001600 Adjusted R-squared 0.239460 S.D. dependent var 0.000434 S.E. of regression 0.000379 Akaike info criterion -12.88493 Sum squared resid 1.18E-05 Schwarz criterion -12.79872 Log likelihood 550.6095 F-statistic 14.22394 Durbin-Watson stat 2.090719 Prob(F-statistic) 0.000005 Từ bảng 4.8 chúng ta có hàm hồi qui ước đoán sau khi loại bỏ các biến đa cộng tuyến: DASC^2 = 0.001129 - 0.000189LMVE + 0.000195LVOL [4.3] (2.318078) (-5.145653) (2.578087) Kiểm tra hiện tượng phương sai không đồng nhất Sử dụng phương pháp kiểm định White (Nguyễn Hoàng Bảo (2004), Nguyễn Quang Dong (2003)) Giả thiết : H0: phương sai của sai số đồng nhất. H1: phương sai của sai số không đồng nhất. Tạo biến: genr RESID^2 = resid*resid Hồi qui RESID^2 theo các biến giải thích, kết quả hồi qui xem bảng 4.9. 78 Bảng 4.9: Kết quả hồi qui phần dư bình phương Dependent Variable: RESID^2 Method: Least Squares Date: 02/15/08 Time: 14:19 Sample: 1 85 Included observations: 85 Variable Coefficient Std. Error t-Statistic Prob. C 1.78E-07 2.77E-07 0.642212 0.5225 LMVE 6.12E-08 2.10E-08 2.919697 0.0045 LVOL -4.89E-08 4.30E-08 -1.138133 0.2584 R-squared 0.109516 Mean dependent var 1.38E-07 Adjusted R-squared 0.087797 S.D. dependent var 2.26E-07 S.E. of regression 2.16E-07 Akaike info criterion -27.82659 Sum squared resid 3.81E-12 Schwarz criterion -27.74038 Log likelihood 1185.630 F-statistic 5.042393 Durbin-Watson stat 1.963510 Prob(F-statistic) 0.008603 Từ bảng 4.9 chúng ta có nR2 = 0.109516*85 = 9.3089 > χ2(0.05, 2) = 5.9915, nên bác bỏ giả thuyết H0. Như vậy hàm số ước lượng đã có hiện tượng phương sai không đồng nhất. Khắc phục hiện tượng phương sai không đồng nhất Hình 4.2: Đồ thị biểu diễn phương sai và biến giải thích 0 20 40 60 80 100 120 1 9 17 25 33 41 49 57 65 73 81 Quan sát Đ ơ n vị LMVE 2^ LVOL 2^ RESID^2 79 Ghi chú: LMVE^2, LVOL^2 và RESID^2 lần lượt là bình phương, của LMVE, LVOL và RESID. Để dễ biểu diễn đồ thị, tác giả đã nhân trọng số của RESID^2 với 10,000. Hình 4.2 cho chúng ta thấy rằng phương sai của sai số rất có thể tỷ lệ với biến giải thích LMVE nên phương pháp có thể khắc phục hiện tượng phương sai không đồng nhất là dùng trọng số 1/LMVE (Nguyễn Quang Dong, 2003). Tác giả dùng trọng số (1/LMVE) để khắc phục hiện tượng phương sai không đồng nhất như sau: Tạo biến: genr DDASC = DASC^2/(LMVE) genr DLMVE = 1/(LMVE) genr DVOL = LVOL/LMVE Hồi qui DDASC theo DLMVE và DVOL. Kết quả hồi qui xem bảng 4.10 Bảng 4.10: Kết quả hồi qui có trọng số Dependent Variable: DDASC Method: Least Squares Date: 02/15/08 Time: 14:33 Sample: 1 85 Included observations: 85 Variable Coefficient Std. Error t-Statistic Prob. C -0.000212 3.44E-05 -6.150045 0.0000 DLMVE 0.001529 0.000458 3.339707 0.0013 DLVOL 0.000160 6.65E-05 2.412818 0.0181 R-squared 0.774245 Mean dependent var 0.000305 Adjusted R-squared 0.768739 S.D. dependent var 0.000135 S.E. of regression 6.48E-05 Akaike info criterion -16.41699 Sum squared resid 3.44E-07 Schwarz criterion -16.33078 Log likelihood 700.7222 F-statistic 140.6126 Durbin-Watson stat 1.869948 Prob(F-statistic) 0.000000 Từ bảng 4.10 chúng ta có: DDASC = -0.000212 + 0.001529DLMVE + 0.000160DLVOL [4.4] (-6.150045) (3.339707) (2.412818) Kiểm tra lại hiện tượng phương sai không đồng nhất 80 Bảng 4.11: Kết quả hồi qui phương sai có trọng số Dependent Variable: RESID^2 Method: Least Squares Date: 02/15/08 Time: 14:34 Sample: 1 85 Included observations: 85 Variable Coefficient Std. Error t-Statistic Prob. C 3.26E-09 2.89E-09 1.126160 0.2634 DLMVE 5.58E-08 3.84E-08 1.452283 0.1502 DLVOL -6.48E-09 5.58E-09 -1.160522 0.2492 R-squared 0.029371 Mean dependent var 4.05E-09 Adjusted R-squared 0.005697 S.D. dependent var 5.45E-09 S.E. of regression 5.43E-09 Akaike info criterion -35.18841 Sum squared resid 2.42E-15 Schwarz criterion -35.10220 Log likelihood 1498.507 F-statistic 1.240654 Durbin-Watson stat 1.954641 Prob(F-statistic) 0.294566 Từ bảng 4.11 chúng ta có nR2 = 0.029371*85 = 2.4965 < χ2(0.05, 3) = 5.9915. Như vậy phương trình [4.4] không có hiện tượng phương sai không đồng nhất.
File đính kèm:
- luan_van_anh_huong_cua_thong_tin_bat_can_xung_doi_voi_nha_da.pdf