Luận văn Đánh giá sai số hệ thống dự báo mưa của mô hình HRM cho khu vực Đông Bắc Bộ
Mô hình HRM (High resolution Regional model) đã được tiến hành chạy nghiệp
vụ từ năm 2001 tại Trung tâm Dự báo Khí tượng Thủy văn Trung ương và các sản
phẩm của nó đã ngày càng trở nên quan trọng trong công tác dự báo nghiệp vụ hàng
ngày. Tuy nhiên, hiện nay việc đánh giá khả năng dự báo của mô hình HRM vẫn còn
hạn chế. Các dự báo viên vẫn thường xem xét sản phẩm dự báo số của mô hình theo
kinh nghiệm nên vẫn chưa có hiểu biết một cách hệ thống và đầy đủ về khả năng dự
báo của mô hình, đặc biệt là trong từng hình thế thời tiết cụ thể. Do đó việc sử dụng
sản phẩm của mô hình HRM còn chưa đem lại hiệu quả cao.
Mưa vừa là yếu tố khí tượng vừa là hiện tượng thời tiết được liệt vào hàng các
hiện tượng thời tiết khó dự báo nhất. Không những chỉ khó dự báo mà việc đánh giá dự
báo mưa cũng là một việc hết sức khó khăn và phức tạp. Trước hết khó khăn nằm ngay
trong bản chất trường yếu tố mưa là trường bất liên tục và không cố định cả theo thời
gian lẫn không gian; nhiều đặc trưng thống kê có tính quy luật ở những yếu tố khí
tượng khác, nhưng lại không có ở số liệu mưa, làm cho việc xử lý số liệu mưa cũng rất
phức tạp. Xong dự báo mưa lại có vai trò đặc biệt quan trọng trong phục vụ dự báo,
nhất là phục vụ phòng chống thiên tai. Vì vậy đó là vấn đề quan trọng cần thiết phải
nghiên cứu. Vì vậy, dự báo mưa và đánh giá dự báo mưa là vấn đề quan trọng cần thiết
phải nghiên cứu.
Luận văn này tập trung vào việc đánh giá sai số hệ thống dự báo mưa của mô
hình HRM theo không gian và thời gian kết hợp với một số hình thế thời tiết chính gây
mưa, mưa vừa và mưa lớn cho khu vực Đông Bắc Bộ
Bố cục luận văn gồm các phần:
Chương 1: Khái quát về mô hình HRM và vấn đề đánh giá chất lượng dự báo thời tiết.7
Chương 2: Số liệu và phương pháp đánh giá dự báo mưa mô hình HRM
Chương 3: Kết quả tính toán và phân tích dự báo mưa mô hình HRM
KẾT LUẬN
TÀI LIỆU THAM KHẢO
Tóm tắt nội dung tài liệu: Luận văn Đánh giá sai số hệ thống dự báo mưa của mô hình HRM cho khu vực Đông Bắc Bộ
1 §¹I HäC QUèC GIA Hµ NéI TR¦êNG §¹I HäC KHOA HäC Tù NHI£N -------------------------------------------------- TRÇN quang n¨ng ®¸nh gi¸ sai sè hÖ thèng dù b¸o ma cña m« h×nh hrm cho khu vùc ®«ng b¾c bé LUËN V¡N TH¹C SÜ KHOA HäC Hµ NéI – 2009 2 §¹I HäC QUèC GIA Hµ NéI TR¦êNG §¹I HäC KHOA HäC Tù NHI£N -------------------------------------------------- TRÇN quang n¨ng ®¸nh gi¸ sai sè hÖ thèng dù b¸o ma cña m« h×nh hrm cho khu vùc ®«ng b¾c bé Chuyªn ngµnh : KhÝ tîng häc vµ KhÝ hËu häc M· sè : 60.44.87 LUËN V¡N TH¹C SÜ KHOA HäC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. nguyÔn v¨n tuyªn Hµ NéI – 2009 3 MỤC LỤC MỞ ĐẦU CHƯƠNG 1. KHÁI QUÁT VỀ MÔ HÌNH HRM VÀ VẤN ĐỀ ĐÁNH GIÁ CHẤT LƯỢNG DỰ BÁO THỜI TIẾT.......................................................................................1 1.1. Giới thiệu tóm tắt mô hình HRM (High resolution regional model) ở Trung tâm dự báo KTTV Trung Ương...............................................................................1 1.1.1. Khái quát về mô hình HRM...........................................................................1 1.1.2. Chạy mô hình HRM với các số liệu ban đầu và số liệu biên từ ba mô hình toàn cầu khác nhau................................................................................................. 2 1.2. Khái quát về bài toán đánh giá chất lượng dự báo thời tiết.......................... 5 1.2.1 Mục đích và ý nghĩa của đánh giá dự báo.....................................................6 1.2.2 Mô hình đánh giá chung cho các yếu tố dự báo thời tiết..............................7 1.2.3 Các yếu tố dự báo.........................................................................................11 1.2.4 Các điểm số dùng trong đánh giá................................................................ 12 1.3 Mô hình đánh giá sản phẩm dự báo số trị.......................................................14 1.4. Các đặc trưng đánh giá....................................................................................17 1.4.1. Độ chính xác................................................................................................17 1.4.2. Kỹ năng dự báo...........................................................................................18 1.4.3 Độ tin cậy....................................................................................................18 1.4.4. Độ phân giải................................................................................................18 1.4.5. Độ biến động...............................................................................................19 1.5. Các phương pháp đánh giá sản phẩm dự báo số...........................................19 1.5.1. Những nguyên nhân sai số dự báo bằng mô hình số...................................19 1.5.2. Một số định nghĩa........................................................................................20 1.5.3. Phương pháp đánh giá với biến liên tục.....................................................22 1.5.4. Phương pháp đánh giá với dự báo pha.......................................................28 4 CHƯƠNG 2. SỐ LIỆU VÀ PHƯƠNG PHÁP ĐÁNH GIÁ DỰ BÁO BÁO MƯA MÔ HÌNH HRM................................... ........................................ .........................34 2.1. Số liệu.................................................................................................................34 2.1.1 . Số liệu mưa quan trắc và thực tế................................................................34 2.1.2. Số liệu mưa dự báo của mô hình HRM.......................................................37 2.2. Phương pháp đánh giá dự báo mưa của mô hình HRM...............................38 2.2.1 . Đánh giá khi xem mưa là biến liên tục.......................................................38 2.2.2. Đánh giá mưa khi phân lượng mưa ra đa cấp rời rạc................................38 2.2.3. Đánh giá mưa khi phân lượng mưa ra 2 cấp một.......................................41 2.3 Căn cứ phân loại hình thế synốp chính gây mưa khu vực Đông Bắc Bộ......43 2.3.1 . Cơ sở phân loại hình thế synốp và các tác nhân gây mưa khu vực Đông Bắc Bộ...................................................................................................................43 2.3.2. Đặc trưng và mô phỏng các loại hình thế thời tiết gây mưa ở khu vực Đông Bắc Bộ...................................................................................................................47 2.4. Thống kê về các ngày có mưa lớn diện rộng và các hình thế gây ra mưa lớn diện rộng trong ba năm 2005, 2006 và 2007 ở khu vực Đông Bắc Bộ ......................61 CHƯƠNG 3. KẾT QUẢ TÍNH TOÁN VÀ PHÂN TÍCH DỰ BÁO MƯA MÔ HÌNH HRM...............................................................................................................65 3.1. Các kết quả tính toán........................................................................................65 3.2. Phân tích chất lượng sản phẩm dự báo..........................................................65 3.2.1. Phân tích sai số hệ thống Bias....................................................................66 3.2.2. Về những chỉ tiêu thống kê khác..................................................................76 KẾT LUẬN...................................................................................................................... TÀI LIỆU THAM KHẢO ............................................................................................. 5 LỜI CẢM ƠN Trước hết, tôi xin bày tỏ lòng biết ơn sâu sắc tới PGS. TS. Nguyễn Văn Tuyên - người đã tận tình chỉ bảo và hướng dẫn tôi hoàn thành luận văn này. Tôi xin cảm ơn các Thầy cô và các cán bộ trong khoa Khí tượng - Thủy văn - Hải dương học đã cung cấp cho tôi những kiến thức chuyên môn quý giá, giúp đỡ và tạo điều kiện thuận lợi về cơ sở vật chất trong suốt thời gian tôi học tập và thực hành ở Khoa. Tôi xin cảm ơn các cán bộ phòng Dự báo Khí tượng Hạn ngắn, các cán bộ phòng Nghiên cứu ứng dụng (Trung tâm dự báo Khí tượng Thủy văn Trung Ương), đặc biệt là Thạc sĩ Vũ Anh Tuấn và Thạc sĩ Võ Văn Hòa đã tạo điều kiện, trao đổi chuyên môn cũng như có những ý kiến quý báu giúp tôi hoàn thiện luận văn này. Tôi cũng xin cảm ơn Phòng sau đại học, Trường Đại học Khoa học Tự nhiên đã tạo điều kiện cho tôi có thời gian hoàn thành luận văn. Cuối cùng, tôi xin gửi lời cảm ơn chân thành tới gia đình, người thân và bạn bè, những người đã luôn ở bên cạnh cổ vũ, động viên và tạo mọi điều kiện tốt nhất cho tôi trong suốt thời gian học tập tại trường. Trần Quang Năng 6 MỞ ĐẦU Mô hình HRM (High resolution Regional model) đã được tiến hành chạy nghiệp vụ từ năm 2001 tại Trung tâm Dự báo Khí tượng Thủy văn Trung ương và các sản phẩm của nó đã ngày càng trở nên quan trọng trong công tác dự báo nghiệp vụ hàng ngày. Tuy nhiên, hiện nay việc đánh giá khả năng dự báo của mô hình HRM vẫn còn hạn chế. Các dự báo viên vẫn thường xem xét sản phẩm dự báo số của mô hình theo kinh nghiệm nên vẫn chưa có hiểu biết một cách hệ thống và đầy đủ về khả năng dự báo của mô hình, đặc biệt là trong từng hình thế thời tiết cụ thể. Do đó việc sử dụng sản phẩm của mô hình HRM còn chưa đem lại hiệu quả cao. Mưa vừa là yếu tố khí tượng vừa là hiện tượng thời tiết được liệt vào hàng các hiện tượng thời tiết khó dự báo nhất. Không những chỉ khó dự báo mà việc đánh giá dự báo mưa cũng là một việc hết sức khó khăn và phức tạp. Trước hết khó khăn nằm ngay trong bản chất trường yếu tố mưa là trường bất liên tục và không cố định cả theo thời gian lẫn không gian; nhiều đặc trưng thống kê có tính quy luật ở những yếu tố khí tượng khác, nhưng lại không có ở số liệu mưa, làm cho việc xử lý số liệu mưa cũng rất phức tạp. Xong dự báo mưa lại có vai trò đặc biệt quan trọng trong phục vụ dự báo, nhất là phục vụ phòng chống thiên tai. Vì vậy đó là vấn đề quan trọng cần thiết phải nghiên cứu. Vì vậy, dự báo mưa và đánh giá dự báo mưa là vấn đề quan trọng cần thiết phải nghiên cứu. Luận văn này tập trung vào việc đánh giá sai số hệ thống dự báo mưa của mô hình HRM theo không gian và thời gian kết hợp với một số hình thế thời tiết chính gây mưa, mưa vừa và mưa lớn cho khu vực Đông Bắc Bộ Bố cục luận văn gồm các phần: Chương 1: Khái quát về mô hình HRM và vấn đề đánh giá chất lượng dự báo thời tiết. 7 Chương 2: Số liệu và phương pháp đánh giá dự báo mưa mô hình HRM Chương 3: Kết quả tính toán và phân tích dự báo mưa mô hình HRM KẾT LUẬN TÀI LIỆU THAM KHẢO 8 CHƯƠNG 1 KHÁI QUÁT VỀ MÔ HÌNH HRM VÀ VẤN ĐỀ ĐÁNH GIÁ CHẤT LƯỢNG DỰ BÁO THỜI TIẾT Chương 1 sẽ xem xét tổng quan về mô hình HRM (High resolution regional model) đang được chạy nghiệp vụ ở Trung tâm dự báo KTTV Trung Ương (NCHMF) và vấn đề đánh giá chất lượng dự báo thời tiết nói chung cùng những phương pháp, điểm số nói riêng trong việc đánh giá các sản phẩm của mô hình dự báo thời tiết số. 1.1 Giới thiệu tóm tắt mô hình HRM (High resolution regional model) ở Trung tâm dự báo KTTV Trung Ương 1.1.1 Khái quát về mô hình HRM Mô hình khu vực độ phân giải cao HRM ban đầu được phát triển bởi Cơ quan Khí tượng Quốc gia Đức (DWD – Deutcher WetterDienst) và được đưa vào sử dụng nghiệp vụ ở Trung tâm dự báo Khí tượng Thủy văn Trung Ương từ tháng 5 năm 2002, dự báo cho hai miền chính trong thời hạn 72 giờ. Miền lớn xác định trong khoảng từ 50S – 350N, 800E – 1300E, 161x201 điểm lưới với độ phân giải ngang là 0.250 (28 km), 20 mực thẳng đứng và bước thời gian tích phân là 120s (HRM28). Miền nhỏ hơn xác định trong khoảng 7.1250N – 27.1250N, 97.250E – 117.250E, 161x161 điểm lưới với độ phân giải ngang là 0.125 (14 km), 31 mực thẳng đứng, bước thời gian tích phân là 90s (HRM14); cả hai miền này đều sử dụng số liệu ban đầu và số liệu biên lấy từ mô hình toàn cầu GME (DWD) 3 giờ một thông qua mạng internet. Trước ngày 27 tháng 9 năm 2004, độ phân giải ngang và thẳng đứng của GME theo thứ tự là 60 km và 31 mực. Hiện tại, độ phân giải ngang của GME đã tăng lên thành 40 km và độ phân giải thẳng đứng đã là 40 mực. Mực thấp nhất của GME là 10m. Mô hình HRM được cung cấp bởi DWD với mã nguồn mở đã trở thành mô hình đầu tiên chạy dự báo nghiệp vụ tại Trung tâm Khí tượng Thủy văn Quốc gia Việt Nam. Các sản phẩm của mô hình HRM rất đa dạng và trở thành nguồn tham khảo tốt cho các dự báo viên trong nghiệp vụ dự báo hàng ngày. Ngoài ra, sản phẩm của nó còn dùng làm đầu vào, điều kiện ban đầu cho các mô hình khác như: Sóng, nước dâng trong bão, mô hình thủy văn... 9 Tuy nhiên, sau một thời gian chạy nghiệp vụ, các nhà mô hình Việt Nam đã nhận ra rằng vẫn còn tồn tại rất nhiều hạn chế trong mô hình HRM, đặc biệt là trong việc thu số liệu đầu vào từ mô hình toàn cầu GME. Những hạn chế này đã được chỉ ra trong các trường ban đầu của GME, sơ đồ đồng hóa số liệu sử ... khi mà MAE và ME tương đối “sát” với nhau thì chúng ta có thể dùng ME để hiệu chỉnh sản phẩm dự báo một cách đáng tin cậy. c. Sai số bình phương trung bình (Mean square error) và sai số bình phương trung bình quân phương (Root mean square error) Sai số bình phương trung bình (công thức tính 1.11, 1.12) là một trong những đại lượng cơ bản và thường được sử dụng phổ biến cho việc đánh giá kết quả của mô hình dự báo số trị. Người ta thường hay sử dụng đại lượng sai số bình phương trung bình quân phương (RMSE), đơn giản là căn bậc hai của MAE. RMSE được xác định bởi công thức 1.13, 1.14. RMSE biểu thị độ lớn trung bình của sai số. Cả MAE và RMSE chỉ bằng không khi và chỉ khi giá trị quan trắc và giá trị dự báo bằng nhau tại mọi điểm trong không gian. Điều này khó có thể xảy ra trong thực tế và thông thường chúng đều dương. Những bàn luận khác về ứng dụng của RMSE trong đánh giá dự báo sẽ được chỉ rõ trong mục tiếp theo vì RMSE thường được sử dụng rộng rãi cùng tương quan dị thường. Tương quan dị thường là một đại lượng xác định sai số pha trong dự báo số trị. Giá trị của RMSE nằm trong khoảng (0,+ ∞). Giống như MAE, RMSE không chỉ ra độ lệch giữa giá trị dự báo và giá trị quan trắc. Khi đem so sánh MAE và RMSE ta thấy: RMSE ≥ MAE. Còn RMSE = MAE khi và chỉ khi tất cả các sai số có độ lớn như nhau. d. Hệ số tương quan (Correlation coefficient) và tương quan dị thường (Anomaly Correlation_AC) 34 Hệ số tương quan (R) cho phép đánh giá mối quan hệ tuyến tính giữa tập giá trị dự báo và tập giá trị quan trắc. Hệ số tương quan được xác định bởi công thức 1.15, 1.16. Giá trị của nó biến thiên trong khoảng -1 đến 1, giá trị hoàn hảo bằng 1. Hệ số tương quan dương phản ánh mối quan hệ cùng chiều (đồng biến), ngược lại, hệ số tương quan âm biểu thị mối quan hệ ngược chiều (nghịch biến) giữa dự báo và quan trắc. RMSE là một đại lượng đặc trưng cho biên độ sai số của mô hình. Cùng với nó trong những năm gần đây người ta sử dụng đại lượng tương quan để xác định mức độ lệch pha không gian giữa hai tập số liệu. Trong khí tượng, hai tập số liệu đó có thể là số liệu dự báo và số liệu quan trắc hoặc là hai tập số liệu của hai mô hình khác nhau. Đối với dạng thứ hai, người ta thường lấy một mô hình làm chuẩn và kết quả dự báo của nó được xem là số liệu “thực”. Tương quan thường được xét giữa những thành phần “dị thường”. Đó là hiệu chênh lệch giữa giá trị tức thời ở mỗi điểm lưới trừ đi giá trị trung bình khí hậu của biến được xét. Vì thế người ta gọi là tương quan dị thường (AC). AC được tính như trong công thức 1.17, 1.18. Trong đó, Pi là giá trị dự báo chuẩn tương ứng với thành phần dự báo thứ 1. Giá trị chuẩn ở đây có thể là một trong 3 chuẩn: chuẩn quán tính, chuẩn ngẫu nhiên và chuẩn khí hậu. Tùy theo mục đích sử dụng, người ta chia ra hai loại AC khác nhau. Dạng thứ nhất được sử dụng khá phổ biến trong trường hợp cần so sánh giữa kết quả dự báo của mô hình với số liệu quan trắc của khí quyển thực, tức là nghiên cứu về sai số dự báo của mô hình. Dạng thứ hai, AC được sử dụng như một thông số để so sánh trong các cuộc thử nghiệm của mô hình. Khi đó, thay bằng việc sử dụng số liệu quan trắc, một mô hình thích hợp sẽ được xem là thực và được đem ra đối chiếu với những mô hình thử nghiệm khác. Sẽ có 3 khả năng xảy ra : Một là so sánh kết quả của hai phiên bản khác nhau của cùng một mô hình mà trong đó chúng khác nhau ở những mặt vật lý: Cấu trúc mô hình, độ phân giải hay cách tham số hóa các quá trình vật lý xảy ra trong đó. 35 Hai là, so sánh kết quả của mô hình khi sử dụng những điều kiện biên khác nhau. Cả hai dạng thử nghiệm so sánh này thường được làm khi cần phải cải tiến chất lượng của mô hình. Ba là, so sánh một kết quả thực nào đó với phiên bản sử dụng điều kiện ban đầu khác nhau của một mô hình. Ví dụ minh họa cho trường hợp này là dạng thử nghiệm OSSE (Observation System Simulation Experiments), trong đó một số mô phỏng sẽ được ban đầu hóa bởi mạng lưới quan trắc tồn tại thực còn các mô phỏng khác được ban đầu hóa bằng những mạng lưới quan trắc được thiết kế trước hoặc chỉ được giả định. Tính khách quan trong tất cả ba dạng thử nghiệm trên sẽ chỉ ra một mô hình phân tích chính xác nhất, khác hẳn với những mô hình khác. AC lớn nhất (bằng 1) khi dị thường khí hậu của mô hình và dị thường “thực” cùng pha. Giá trị AC càng nhỏ khi chúng càng lệch pha nhau và nhỏ nhất (bằng -1) khi các dị thường này ngược pha nhau. Điểm AC thường hữu ích trong việc giải thích kỹ năng của mô hình bị giảm sút khi thời gian dự báo tăng lên cũng như sự biến thiên kỹ năng mô hình qua các năm. 1.5.4 Phương pháp đánh giá đối với dự báo pha Đối với dự báo pha hay dự báo xác suất, khi tiến hành đánh giá người ta thường sử dụng bảng tổng hợp đánh giá. Bảng tổng hợp đánh giá được thiết lập dựa trên nguyên tắc sau: 1. Tại các ô giao nhau giữa pha dự báo và pha quan trắc là số lần hiện tượng thời tiết xảy ra trong hai pha dự báo và quan trắc. 2. Việc chia phải đảm bảo sao cho xác suất tổng các pha phải bằng 1. Ta sẽ có bảng liên hợp đa pha như sau : Bảng 1.2. Bảng liên hợp dự báo - thực tế 36 Dự báo Pha 1 2 10 Tổng 1 a11 a12 a110 a1. 2 a21 a22 a210 a2. : Thực tế 10 a101 a102 a1010 a10. Tổng a.1 a.2 a.10 N Khi ta dồn các pha 2 -:- 10 thành 1 pha khi ấy ta sẽ còn 2 pha là ‘Không’ và ‘có mưa’, hay còn gọi là dự báo nhị phân (hay phân đôi). Phương pháp phân đôi dự báo được phát biểu như sau: khi sự kiện nào đó xảy ra ta gọi trường hợp này là “có”, khi sự kiện nào đó không xảy ra ta gọi trường hợp này là “không”. Nhân tố dự báo mưa và sương mù là những ví dụ điển hình về dự báo có/không. Cũng có thể đặt ra một ngưỡng nào đó để khi dự báo cũng sẽ có 2 trường hợp xảy ra là có và không, ví dụ như dự báo gió với tốc độ lớn hơn 10m/s. Để đánh giá dự báo bằng phương pháp này chúng ta bắt đầu bằng bảng liên hợp, bảng chỉ ra các tần suất dự báo và quan trắc có và không. Có tất cả bốn cách kết hợp giữa dự báo (có hoặc không) và quan trắc (có hoặc không), ta gọi đó là phân bố chung. Phân bố chung bao gồm: - Tỷ lệ dự báo trúng (hit): đối tượng được dự báo là xảy ra và thực tế đã xảy ra - Dự báo sai (miss): đối tượng được dự báo là không xảy ra nhưng thực tế lại xảy ra - Báo động sai (false alarms): đối tượng được dự báo là xảy ra nhưng thực tế không xảy ra - Dự báo đúng ‘yếu’ (correct negative): đối tượng được dự báo là không xảy ra và thực tế không xảy ra. Bảng 1.3: Bảng tổng hợp đánh giá dự báo nhị phân Quan trắc Pha Có Không Tổng 37 Có N11-Thành công N12-Thất bại Dự báo có Không N21-Báo động sai N22-Đúng yếu Dự báo không Dự báo Tổng Quan trắc có Quan trắc không Tổng Bảng liên hợp là một công cụ có rất hữu ích để từ đó ta có các dạng sai số khác nhau. Một dự báo hoàn hảo sẽ chỉ cho ta “dự báo trúng” và “đúng yếu”; không cho “báo động sai” và “dự báo sai”. Dao động của con số thống kê được tính toán từ các yếu tố trong bảng liên hợp để mô tả mặt nào đó của dự báo. Chúng ta sẽ minh họa các con số thống kê này bằng các ví dụ. Giả thiết, trong một năm, số ngày mưa theo dự báo và quan trắc được cho trong bảng liên hợp dưới đây: Bảng 1.4: Phân bố mưa dựa vào bảng tổng hợp đánh giá Quan trắc Pha Có Không Tổng Có 82 38 120 Không 23 222 245 Dự báo Tổng 105 260 365 Con số thống kê tuyệt đối có thể được tính toán từ bảng liên hợp có/không và được biểu diễn bởi các điểm số cho dưới đây. 1.5.4.1 Phần trăm đúng (Percent correct - PC) Điểm số PC được tính bằng tỷ số giữa tổng số lần dự báo đúng trên tổng số lần dự báo. 38 1002211 T NN PC (1.21) Giá trị của PC nằm trong khoảng 0 ≤ PC ≤ 1. PC = 1, nghĩa là dự báo hoàn hảo. Từ bảng 3.2 ta có: %83100 365 22282 PC , nghĩa là dự báo chính xác 83% so với tổng số trường hợp dự báo. 1.5.4.2 Tỷ lệ báo sai (False alarm ratio) Điểm số FAR được tính bằng tỷ số giữa số trường hợp dự báo có nhưng trên thực tế lại không xảy ra so với tổng số trường hợp dự báo có. 2111 21 NN N FAR (1.22) Giá trị của FAR nằm trong khoảng 0 ≤ FAR ≤ 1. Giá trị hoàn hảo của FAR là bằng 0 khi mô hình dự báo là hoàn hảo. Điểm số FAR rất nhạy đối với “báo động sai” nhưng không nhạy đối với “dự báo sai”. Và điểm số này không quyết định trực tiếp đến chất lượng dự báo. Ví dụ lấy từ bảng 3.2: 32.0 3882 38 FAR , nghĩa là 1/3 trường hợp dự báo là mưa nhưng thực tế quan trắc lại không như vậy. 1.5.4.3 Xác suất phát hiện hiện tượng (Probability of Detection of Event) Điểm số POD được tính bằng tỷ số giữa “thành công” với tổng số lần quan trắc thấy xuất hiện sự kiện. Điều đó có nghĩa là dự báo đúng bao nhiêu phần trăm so với thực tế. 2111 11 NN N POD (1.23) 39 Giá trị POD nằm trong khoảng 0 ≤ POD ≤ 1. Trong trường hợp POD = 1 thì mô hình dự báo là hoàn hảo. Ta lưu ý một điều rằng, điểm số POD rất nhạy đối với “dự báo trúng”, không nhạy đối với “báo động sai”. Có thể giả định tăng thêm dự báo “có” để làm tăng tỷ lệ dự báo đúng, và dĩ nhiên tỷ lệ dự báo sai sẽ thấp đi. Điểm số này thường được dùng kết hợp với điểm số FAR. Từ bảng 3.2 ta có: 78.0 282 82 POD , nghĩa là khoảng 3/4 trường hợp quan trắc thấy mưa được dự báo chính xác. 1.5.4.4 Độ lệch (Bias) Độ lệch ở đây được ký hiệu là BE để phân biệt với độ lệch ở biến liên tục ký hiệu là BIAS, được tính bằng tổng số trường hợp dự báo có xuất hiện sự kiện trên tổng số trường hợp quan trắc có xuất hiện sự kiện: BE = (N11+N12)/(N11+N21 ) (1.24) BE có giá trị biến thiên từ 0 đến ∞. Dự báo là hoàn hảo khi điểm số BE bằng 1. Thông thường hệ thống dự báo có xu hướng dự báo thấp (BE<1) hoặc dự báo vượt quá (BE>1). Độ lệch không xác định mức độ tương quan giữa dự báo và quan trắc, nó chỉ xác định dựa trên mối tương quan về mặt tần suất. Ví dụ về điểm số này, BE =(82+38)/(82+23) , nghĩa là dự báo mưa có xảy ra lớn hơn so với thực tế. 1.5.4.5 Điểm số báo hiệu (Threat Score) 40 Điểm số TS là tỷ số giữa “dự báo trúng” với miền giao bởi dự báo “có” và quan trắc “có”. Điểm số được tính bởi công thức sau: 211211 11 NNN N TS (1.25) Giá trị TS nằm trong khoảng 0 ≤ TS ≤ 1. TS nói lên mức độ trùng khít giữa vùng dự báo và vùng quan trắc. TS = 1 có nghĩa là dự báo là hoàn hảo, vùng được dự báo trùng khít với vùng thám sát. Ưu điểm của TS so với FAR và POD là ở chỗ nó chịu ảnh hưởng bởi cả “báo động sai” và “dự báo sai”. Ví dụ với số liệu lấy từ bảng 3.2 ta có: 57.0 382382 82 TS , nghĩa là hơn một nửa trường hợp mưa (dự báo và/hoặc quan trắc) được dự báo chính xác. Như vậy, chương 1 đã khái quát lên những nội dung chủ yếu trong các bài toán đánh giá nói chung cũng như những bài đoán đánh giá cho các sản phẩm của mô hình dự báo thời tiết số nói riêng. Trên cơ sở những lý thuyết đó, chương hai sẽ đề cập đến các vấn đề về số liệu và đánh giá dự báo mưa cho mô hình số HRM một cách chi tiết.
File đính kèm:
- luan_van_danh_gia_sai_so_he_thong_du_bao_mua_cua_mo_hinh_hrm.pdf
- pages_from_lvths_tran_quang_nang_4_8472_20373.pdf
- pages_from_lvths_tran_quang_nang_3_707_20372.pdf
- pages_from_lvths_tran_quang_nang_2_5584_20371.pdf